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Theory of Space Charge Between
Parallel Plane Electrodes

I. INTRODUCTION

The theory of space charge between parallel plane electrodes has been treated

by numerous authors beginning with Child's work in 19111 and culminating in a
2

fairly detailed paper in 1938 by Fay, Samuel, and Shockley. The present report

differs from these earlier publications in a major respect; namely that the earlier

papers treat an initial value problem. while the current work treats a boundary

value problem. From a practical standpoint, if similar ranges of parameters are

covered, this difference is of small consequence, since for equivalent families of

solutions the information contained is equivalent. From the mathematical point of

view, however, the treatment as a boundary value problem differs substantially

from the initial value treatment

The planar space charge problem is one of the simplest naturally occurring

problems in electrostatics. Since most problems in electrostatics are formulated

by necessity as boundary value problems, it is of interest to solve the planar space

charge problem in this manner. The various types of solutions are also more easily

organized and classified with this treatment. Finally, such a solution serves as a

rare prototype which can be solved analytically to solutions of more difficult problems.

(Received for publication 6 Decemb, - 1982)

1. Child, C.D. (1911) Phys. Rev. 32:492.

2. Fay, C. E., Samuel, A. L., and Shockley, W. (1938) Bell Systems Technical
Journal, 17:49.
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2. FORMAL CLASSIFICATION OF THE SOLUTIONS OF THE

SPACE CHARGE EQUATION

The space charge equation for a plane, written in MKS units is

EOdev ne = J((2e/M1(v+V))1
/ 2

dx

where

v = electric potential,

n = charged particle number density,
e = electronic charge,
J = current density,

M = particle mass,

x = spatial coordinate,

Co = permittivity of free space,
v° = initial energy per unit charge of emitted particle.

Let

y= x/L, A = 9/4 J L 2 = V/v
E v3/0

0 0

where L = distance between electrodes.

Then

d2 _ 4/9A (2)d..

Integrating twice, we have

d0 (3)

= *(2C+ 16/9A y, . 0)1/2

and

4/9A + C (2C + 16/9 A + 1DI/2 y + C , (4)

16/27 A2

8



where C and C' are constants of integration. Let 0 = 0 when y = 0. Then

VA'+o - C (2C + 16/9 A +0) 1 / 2 = y+ -/9 2 - (2C + 16/9 A)'
16/27 A 16/27 A

(5)

do
ihe common space charge limited solution sets = 0 when y = 0. Here, we treat

the general case by letting ( = o when y = 1. There are then three distinct classes

of solutions which must be distinguished:

(I) A potential minimum for 0 - y < does not exist.

(II) A potential minimum at 0 -M 1 does exist, the corresponding

value of potential oM is greater than -1.

(II) A potential minimum at 0 - yM -- 1 exists; the corresponding

potential 0 M = -1; and the current divides at y = YM"

We examine each of these in turn.

For class I. a single solution, with either the + (0o > 0) or - (o < 0) sign is

continued from y = 0 to y = 1. The imposition of 0 = o when y = 1 then leads to

the following equation for the determination of C

4/9A.Vf'0-C +- 1/2 + 4/9A- C

16/27 A' 16/27 A 2 (2C +16/9 A) 1 2 .

(6)

If this equation is cleared of fractional powers it results in a cubic in C,

2 C - ( - B2) 2 C - 16/27 A J2 A + (1 - B) (B - - A)) C

+ (8/27) 2 A 2 [4 A - (B - 1 - A) ] = 0 (7)

where

Eq. (7) contains implicitly roots corresponding to the + sign appearing in

Eq. (6); it irnay also contain extraneous roots introduced by the clearing of fractional

exponents. Thus any (branch of) solutions for C of Eq. (7) must be tested in

Eq. (6) to insure that they actually represent solutions of the original boundary value

problem. There are thus both advantages and disadvantages in working with Eq. (7)

rather than directly with the original Eq. (6). The advantage is that Eq. (7) is of

a well known explicitly solvable form, so that the roots can be systematically found

and classified; the disadvantage, noted above, that once a root is found it must be

checked further to see if it also satisfies Eq. (6).

9
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The general explicit solutions of Eq. (7) are too lengthy to be of value and we

do not write them down here; we discuss rather their general properties.

The class I solutions may be further divided as follows:

(Ia) o ->  0 .

The + sign in Eqs. (3) through (6) is chosen and

do._) = 16/9A+ 2C- -0.

For any given 0 there is a maximum value of A. corresponding to C = -8/9A, and

obtained by putting this value of C into Eq. (6)

AM+ =(B+ 2 )2 (B-I). (8)

(Ib) o - 0O

The - sign in Eqs. (3) through (6) is chosen and

do) = 16/9AB+ 2C S0.

For any given 0 there is again a maximum value of A, here corresponding to

C = - 8/9 A B and obtained by putting this value of C into Eq. (6)

AM = (1 + 2B) 2 (1 - B). (9)

The maximum valueofA M is obtained foro ° = -3/4 (B= 1/2) and is given by

A M 2

MAX

Class I, -I 7 o o

For this class, the curve of o vs y is split into two branches and Eq. (6) cannot

be used directly to fix C. The separate boundary conditions for the two branches

are:

10
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Left hand branch Right hand branch

(- sign applies) (+ sign applies)

do) 0 )m 1

For the left hand branch we use Eqs. (3) and (5) with the - sign to obtain

2C + 16/9 A V+OA," l = 0 with -1 - AM'- 0 (10a)

=-M
+ 4/h '\ - C-i 0~ y<  

5 1. (l0b)
+4/9A C(2C + 16/9 A) 1 / 2 , 1b

16/27 A 2 YM

For the right hand branch we use Eq. (4) with the + sign and obtain

4/927 A- C (2C + 16/9AB) 1 2  I - YM(lla)

4/9 AB - C (2C+ 16/9 AB) I / 2  1 4/9 A-C (2C + 16/9 A)''2  (lib)

16/27 A 16/27 A 2

The potentials are given by

4/9 A i + 7 - C (2C + 16/9 A +-() 1 12  = ,+ ( Y )  (12)

16/27 A 2

where the + sign goes with the left hand branch and the - sign with the right hand

branch.

The only difference between Eq. (lib) and Eq. (6) is in the signs on the right

hand side. When, however, Eq. (llb) is cleared of fractional powers to form a
cubic in C, these differences are eliminated, and once again we obtain Eq. (7).

Again, clearing Eq. (llb) of fractional powers may introduce spurious roots, so
that solutions of Eq. (7) must be examined carefully to see if they satisfy both

Eqs. (10a) and (1 lb). and are thus proper solutions of the original boundary value

problem.

The lower limits of A for class II solutions are the upper limits for class I,

namely A M . If all solutions were unique, the upper limits would be found from Eqs.

(10a) and (10b), the former with(PM = -I leading to C= 0, the latter yielding

YM 1/ V . Putting these values in Eq. (Ila)

I1



+3/4
A+ = [B3/2+ 1 =]2 +0) + 1] 2 (13)

In fact, however, not all pairs of values (A, B) do lead to unique solutions, and

AL does not always give the upper limit for class II solutions. It does, however,

play a significant role in the classification of solutions.

For some values of we find A . A M while for others this is not the

case. The transition occurs for

(BU+ 2) 2 (BU - 1) (B 3 / 2 + 1)2  forP >0 (14)

and for

(2 BL + 1)2 (1 - BL) = (B 3 / 2 + 1)2 for o < 0. (15)

Eqs. (14) and (15) when cleared of fractional powers are quartics with one root,

which clearly does not satisfy Eqs. (14) and (15) at BU = BL = 1. If these quartics

are divided by BU - I and BL - I respectively, the resulting cubics are

3 2

2 5 BL + 25 BL 5 L - 9= 0 (17)

from which we see directly that B L = 1/B U ,

Solving Eq. (16) we have for the one real, positive root, BU = 1. 81612 and

hence B L = 0.55062.

The corresponding values of o are

o) U = 2. 2983 and 0 ) L = 069682

I'he maximum value of

A + 2AhM= (B+ 2) (B- 1)

AL (B 3
2 + 1)

is 4/3 and occurs for B = 4 or( = 15. 1he maximum value of

12



A- 2i
A\l (1 + 213)2 (1 B)1/2

A (B + 1)

is al (o 4/3 and occuLs to1 B1 1 '4 orv - 15/ 1i.
0

The significance ol tihe separation of values of C. into those for which

c' O( and Q ( o ) 0will be claritied in what follows.

3. DISCUSSION OF SOLUTIONS FOR THE INTEGRATION
(NSTANT FOR CLASSES I AND II

We commence our examination of the functions C(A. B). implicitly defined by
Eq. (7). by an application of Descartes' rule. WVe note that the coefficients of the

first and second terms are always positive and negative respectively. The coeffi-

cient of the third term is positiwvn for small A and changes sign when

(B 2  (B -1) ( 1)

+ I

while the coefficient of the last term is negative for small A and changes sign when

( :3 / 2  )2
A (B 1)

No-W,

(3/2+" 12> (B -1 I) ( 11' - I)

B I

for all

0 < H <o

whlile

: 13/2 _12 (12 - ) (B 3  - 1)

, + I

the equality holding only for B= I. We thus have the following sequence of varia-

tions in signs of coefficients as A goes from 0 to .

13
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A Signs of Coefficients

0 <A< AL + - + -

AL < A < AK + + +

++AK<A< A + + +

AL <A< + - -

The change in sign from the second to the third row does not change the number of

variations in sign and hence we have for the number of ± roots, N according to

DesCartes' rule,

N N+

0 < A <AL 3 or 1 0

A < LA <A 2or 0 1

AL<A <'o 1 2or 0

The ambiguities in N+ and N are resolved by examination of the discriminant of

Eq. (7).

If we use the common notation for the coefficients of cubics

C 3 + pC2+ q C+ r= 0 (18)

2a = q - p /3

b = 2/27 p3 _ 1/3 pq + r

then the discrimitiant is defined by

R= b 2/4 + a 3/27 .

The discriminant of Eq. (7) is of eighth order in A, and is factorable into the

following form:

(16)2 A 3  3 2 11 X
=(27=) A - (I + 13) 1 A - (I- - ((-3 +(B/2 + 0 2

(1,9)

Thus, for A < (+ B) 3 there are three real roots and for A > (1+ 1) 3 only one. Let

A - (+ B) then the numbers of roots are
R

14



N N

0 <A <A L 3 0
A+<X 2 1A L < A < A +

A+< A < A 2L

Aii <A <1 0

With this table and the preceding material in hand we are in a position to

organize, and in what follows, to assign types of solutions in the parameter space.

Plotting the four curves A M  AM . AI, and A R in the A, B (or A, o ) plane, we find

the quadrant A, B : 0 divided into seven regions. Each region will be characterized

by the type(s) and numbers of solutions allowed in that region (Figure 1). Although

there is a change in sign of one coefficient at A = AL. there is no corresponding

change in the class type of solution and hence AL does not appear in the figure. A

further subdivision of, and final assignment of classes in the regions of the A, B

plane is accomplished in Section 4.

140

2.0

10"0 A,

7

80 OI2 O4 /" 0 l0 I2 1 62

A
4

6.0

4.0

2.0I

0.0 02 0.4 /0-6 08 1.0 12 1A 1.6 1. 72.O

BLB

Figure 1. Division of (A. B) Plane Into Separate Regions Characterized by

Numbers and Classes of Solutions in Each Region
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We now proceed to examine the solutions of Eq. (7) so that classes of solutions

may be assigned to the different regions.

We intend to examine the values of C as functions of A for fixed (D . In this,
0

we define C1 . C 2 , C 3 so that outside of values for C at the singular points

A 1 = (1- B) 2 (B+ 1/2), A 2 = (I- B) 2 (B/2+ 1) we will have C 1 - C 2 - C 3 . The

labelling of the roots in this order also identifies them permanently by branch. If

we put C=C' -p/3then Eq. (18) becomes

(C') 3 + aC' + b= 0. (20)

If

b = - b2+ )

j3=b/2-R

our solutions are labelled so that

C' = a+ 0 (21a)

2 -7 -7' 3(21b)

C 3 --- + 3(21c)

3.1 Asymptotic Limits for Smiall A

For small A the roots of Eq. (7) are given by relatively simple expressions.

If the equation is modified so that terms in A only as high as the second power are

retained, we have

2C - (B -1) 2 C 216/27 AIA(I+B - (B _) (B 3 -1)] C + (8/27) 2 A 2 (B - 1 ) = 0.

(22)

If we assume a solution OIC] >> OJAI where O[ ] = "order of" we may drop the term
in A 2 , and the resulting qadratic has as one solution

1 3B2_ 1)2 16/27 B 3_ 1

16



The other root of the quadratic leads to OIC] = OJA] and is hence contrary to our

assumption. If Eq. (6) is expanded out to terms of order A 2 we find
I __ * (B 2 -1). Thus the single solution of Eq. (22). = I/2(B2 _ 1) 2 contains

the two solutions of Eq. (6) corresponding to the * sign.

This does not however exhaust the solutions of Eq. (22). If we now assume

that there is a solution of the form OICI = OJA] the term in C 3 is of higher order

in powers of A than the other three terms and solution of the quadratic resulting

from neglecting the term in C 3 yields. for B4 I

C 2 = C3 = 8/27 B-_1 A = 8/27 B++ 1 A (24)
2 3 B 2- 1 _W+-

This is a double root of Eq. (21) and hence the existing three roots have been found.

For B= 1, the approximations A f(B) << (B 2 
- 1) (B 3 

- 1) with f(B) 0 are no

longer valid and we must return to Eq. (7). Setting B= I and then retaining only

the lowest power of A in the coefficients we have

C 3 
- 16/27 A2 C + 2(8/27)2A3 = 0

The solutions are

C 1 = C 2 = 4/9 A (double root) (25a)

C 3 = - 8/9 A . (25b)

If Eq. (24) is put into Eq. (6) and the roots expanded to obtain the lowest non-

vanishing order in A. we find that C 2 is not a solution of Eq. (6). Although it is a

solution of Eq. (Ila) it is also not a solution of Eq. (10a).

Thus, of the three solutions of Eq. (22), only C 1 is a solution of the original

problem; and, this contains the two solutions corresponding to the ± sign.

3.2 Other Special Values of C

For A= AR= (B+ 1) 3 (and R= 0). Eq. (7), when solved by use of standard cubic

formulae yields expressions which may be simplified to obtain

C 1 = 16(B+1)2 (31B2+ 14/3 B+ 3) (26a)

C2= C3 = - 8/9 13(+ 13)2 (26b)

17
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Similarly. forA=A =(l-B) (B/2+1)

2
C2 = 1/1-)(B +2B+9) (27a)

2andor=A 2/(-) (B+2)(2b
2 2

C1  1/ 18(B -1) 2(9 B 2+ 2B+ 1) (28a)

C2 C 3 = 2/9(B- 1) 2(2B+l1)(2b

FbrA=A M = (B+ 2)2 (B - 1) we know one root from the definition of A.; namely

do) 2 C +1 6 /9 A

and

2C =C 3  -8/9 (B+ 2) (B -1). (29a)

From this we obtain an equation quadratic in C, and the remaining two roots

C.=1/4 1 (B -_1) 2+ 16/9 (B+ 2)(B -1)± (B -_1)

[ (B 2 _l)2 + 32/3 (B+ 2) 2 (B - 1)] 1 / (29b)

where the ± signs are associated with the subscripts 1. 2 of C respectively.

Similarly for A= A = (2 B+ 1) 2(01-B) one root is

C3 - 8/9 A B -8/9 B3(2 B+ 1) 2 0(1-13) (30a)

and the other two roots are found to be

18



C 12 =14 (B2 1)2 + 16/9 AB± [B2- _)2+ 16 9AB

- 64/81 AB3(B- 1) (-25 B3 _25B2 +5 B+9)] 1 (30b)

where again the ± signs go respectively with the subscripts 1, 2.

3.3 The Zeros of C

The zeros of C are obtained when

4 A - (B 3 -_ I -A) 2 = 0

OT,"

3/2 2

A = A L = (B 1  2 (31)

For any B there are thus two values of A for which C= 0. It must be deter-

mined however which branches. C l , C 2 or C 3 these zeros belong to. This, as

well as the further properties of C require more complete solutions for C as

functions of A. We now turn to these solutions.

3.4 Systematic Presentation of Sofutions for C

We continue our examination of solutions of Eq. (7) by graphing solutions of

C vs A for seven values of 10o: -0. 9; -0.5; 0. 0; 1.0; 3.0; 30; and 1000. These are

shown in Figures 2 through 8. The first five values are chosen to fall in the

separate regions illustrated in Figure 1; the last two to show behavior at large 00.

In addition, Figures 9, 10 and I I show the behavior of the roots for small A, for

P= -0.5; 1.0; and 3.0.

We note first that the zero at A = (B - 1) occurs in the C 3 branch, while

that at A = (B 3 / 2 + 1)2 occurs in the C 2 branch. Further, again aside from

singularities at A= A and A= A 2 the intent to label the branches so that

C I > C2  C3 is accomplished. We next turn to a discussion of these singularities.

19
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3.5 Sngularities in C

The singularities of C occur at the branch points given by R(A)= 0. We con-

fine ourselves to some general comments pointing out several of the more obvious

features of these singularities.

We note to start with that as far as first derivatives are concerned a visual

inspection of "igures 2 through II indicates that for B < I and A I < A 2 , CI and C 2

have discontinuities at A=A I , while C 2 and C3 have discontinuities at A=A For

B > 1, and A I >A the roles of A and A are interchanged.~~ 2 1 2arinecngd
For the behavior of the functions themselves Eqs. (27) and (28) yield the

following:

B A=A A=A 21 2
B < I C I <C 2 = C 3  CI >C2 C 3

B > 1 C1 >C 2  C 3  C 1 <C 2 = C3

B= I C1 = C 2  C 3  Cl= C2 C3

At A= the smaller of A1 and A 2 the evidence of a discontinuity is clear. The fig-

ures show at this point that C= C2 > C 3 ; Eqs. (21) on the other hand have when

R = 0, in general, C 2 = C 3 4 C1 . There thus exists, for each fixed value of B a

singularity of C at A = the smaller of A 1 , A 2 . This singularity has the effect of

exchanging the neighboring values of C and C Numerical solutions are con-

sistent with this supposition. Thus we have for example for B= 2 the following:

A C 1  C2 C 3

1.99997 1.77782 1.77775 0. 944434

1.99998 1. 77780 1. 77776 0. 944437

1. 99999 1. 77779 1.77777 0. 944441

2.00000 0.94444 1.77778 1.777778

2. 00001 1. 77779 1.77776 0. 944448

2. 00002 1. 77780 1. 77775 0.944452

2. 00003 1.77781 1.77774 0. 944455

At A= the larger of A1 , A, there is no obvious requirement that a singularity

exist, since graphical values in the figures and the results of Eqs. (21) both lead

to CI > C2C 3"
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3.6 Assignment of O]asses to I|utions

Having obtained the solutions of Eq. (7) it now remains to determine which of

these satisfy Eq. (6) (class I) and which satisfy Eqs. (10a) and (lib) (class II).

This is accomplished by computer by substituting values of C into the appropriate

equations. If this is done, changes in numbers and classes are found to occur only

for A=A . A-,. A.. and A This information is presented in Table 1. ihe

assignment of solutions in class III are discussed in the following section.

Table 1. Numbers and Classes of Solutions in the Various Regions
of Parameter Space

Region Solutions Class I Class II Class III

1 1 1 0 0

2 1 1 0 0

3 1 0 1 0

4 3 0 2 1

5 3 1 1 1

6 3 1 1 1

1 0 0 1

8 3 1 0 2

9 3 0 1 2

3.7 Uniqueness

For A < A+ (classes I and II) and A > A (class Ill) the solutions for C are
L + R

unique functions of 1o and A. For AL <A <AR on the other hand the solutions are

many valued. Which solution among the multiple solutions is actually realized, may

be determined by; (1) the manner in which the operating conditions are approached.

and (2) questions of stability of operation. We do not investigate either of these

questions here.

3.8 Determination of Values of C

Value(s) of C for any %o, A may be found by use of Table 2. Lhe table is con-

structed by examination of solutions corresponding to the regions shown in Fig-

ure I and by observing that
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A M All A 2  -1 (0

A A,. A2  -1 < 00

M 1 2 o0

Table 2. Assignment of C to Branches Corresponding
to Ranges of A and 0

1 -(D -(0 and 0 0 <00 (A~ + ? A , A

Range of A Branch of C Class

AfA1  C1I I

A A A+ C I1 2 2

L C 2 3 I

A * ~A A CCM R 2'I

(D '-SO0(AM 2tAA 2ad0%!(j(Ak> A,. A2)

Range of A Branch of C Class

A I A A 2  C 2  1

A A*C 3  I

A * A +CIM L C3

L R C 2'C 3

A± + for o > 0
m 0

A A for ( < 0
xvi o

4. THE SPACE CHARGE LIMITED (CLASS 111) CASE

We introduce the following additional terms (Figure 12):

j=Fraction of emitted current which is transmitted past the potential minimum.

=I Value of y at the potential minimum.
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Figure 12. T 'ypical Class III Potential Distribution Showing Fractional Curr(-nt
Flow to Left arid Right of Potential Minimum at 0 1. 0. B = A 13 :. 98;

=0. 2 2-49-;. 0. 6235

E~q. (2) is then repilcwed bY

d2 4/9 A vv .(33)

dy 0~

Solutions of tEqs. (32) and (33) which satisfy the boundary conditions

are

0 1 + (A(2 - j)] 2 /3 (y, - Y) 4 /3  
(34)

28



= -1 + (A j)2 / 3 (y-yl)4/3 (35)

respectively. The boundary conditions at y= 0 and y= I then yield

1 = A(2 - j) y2 (36)

B 3 = Aj(-y ) 2 . (37)

Eliminating j.

B3 (38)2A= lly+ (-Y)Id 2

and clearing of fractions,

4 3 3 2
F- 2Ay4-4Ay1+ (2A_1_B 3 y 1 + 2yl1l 0  (39)

an equation of fourth order in yI" The role of yl here replaces that played by the
integration constant in the other two cases; once it is known (a function of A and B)

the potential distribution is fixed.

Since F(0)= - I and F(-o)=-, Eq. (39) has at least one real root between 0 and
00. Since F() -B 3 and F(- o )=o, there is at least one real root between +I and

+oo. From Eq. (38) it is clear that the other two roots, when real, lie between

Y= 0 and y, = 1.

Consider Eq. (38) for a fixed value of BA. ForY1 = 1 or y= 0, A For
some 0 < y < 1, A has a (unique) minimum. A must always be larger than this
minimum, and finding this minimum supplies a necessary condition in defining the
domain of A, B space over which there will be allowable solutions for yl. We have,

dA -2 2 B3
2 Y-d 7 + 3 + 1-l = 0

T y l- y 1 )

(0 - y) 3 
= B Y, (40)

YI

2 B= BB+I

2A2 2 A =(B+1) 2 = (l+B) 3= =1 AR (41)
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Although A > AMIN guarantees a solution of Eq. (39) for 0 -< Yl - 1, there are

further requirements on the values of A necessary to insure that solutions of

physical interest exist. The value of j can never be greater than j= 1. Putting

j= 1 in Eqs. (36) and (37) we obtain

- B- 2 (42)
Yl (I -y)

For B I 1 this limits y, to values

Y, 1 /2 and A to values

A 11+ B3/2)2 +

For B= 1, A A+ forallB >1,A >A and hence we must have A -A 4
AMI N  L L MIN

in order that solutions of physical interest exist.

For B - 1, Eq. (42) yields

S 1
Y,<I B B 3 / 2

or

A I 32 = (3

Since AL S A 5 A + the dual inequalities Eqs. (41) and (43) can be satisfied byL MIN L
A > AMI N . Now, when A= AMIN' a double root of yl is

I B+ 1

and

j=2 B
B-+ T1

Of the two solutions for Y, for A > AMIN' one increases with increasing A, the

other decreases with increasing A. This hold for A M S A S A+ with both solu-
+ MIN -L

tions for 0 5 Yl 5 1 satisfying j 5 1. At A=A L one value of j equals unity, and for
+ 1

A > AL. the solution with the larger value of yl has j > 1, so that only one solution
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of physical significance exists for A > AL+ These considerations are clarified
by graphical display in Figures 13a and 13b.

40

30-

A

20- A< ~ A L

hi j>I ~ONE SOLUTION

A- Aug. 1>1 NO SOLUTIONS

10 /

4/

0.0 0.2 0.4 0.6 0.6 L.0

YI

Figure 13a. Geometric Illustration of Limits and
Numbers of Class III Solutions for B I
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 13b. Geometric Illustration of Limits and
Numbers of Class III Solutions for B := 1

+
We note that AMIN intersects AM at B l/ & > BL and intersects A at B= 1.

Figure 14, a superposition of AMIN onto Figure 1 completes the classification of

solutions, dividing the A. B plane into nine distinct regions. The region labelled

2 in Figure I is split into two regions, 2 and 8, in Figure 14; and the region

labelled 3 in Figure 1 is likewise split into regions 3 and 9 in Figure 14. The

numbers of class III solutions in each region has already been given in Table 1.
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Figure 14. Division of (A. B) Plane Into Separate Regions Characterized by
Numbers and Classes of Solutions in Each Region. Detail for B3 - 1 shows
modification of Figure I to include class III solutions

4.1 Special Values of y

For several particular values of B, the solutions of Eq. (33) are of simple

form.

For B= 0, the four roots are

1±-,I (the last a double root)

For B1= 1. the four roots are

Y, A+ 2± 2 V2A + 1 1/

The two roots 0 yl I are those for which the ±sign inside the radical is taken
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For A = (B 3 / 2 + 1)2 one root is

Yl-=

The residual cubic is

2rTy3+ (2 - 4 Ay2 + ('A- - 2) y1 + 1 0

and the remaining roots do not seem to have simple forms.

(B+ 1)
3

For A = A MI N = , the four roots are

yl = T+---B (double root)

B± B2 + B+ I

Yl= B+ 1

Figure 15 shows typical values of y, as a function of A with B as parameter.

Solid lines are solutions of the original boundary value problem with j ' 1. Dashed

values continue solutions for all values 0 -: Y, - 1. Dotted lines (1/N' for B -> 1
and 1/VA and (2A)-1/ 3 for B - 1) separate regions according to number of class III

solutions existing in each region.

Y, (2A) - "3

0..0 2.- - /-,,-

--\-.. .--/- - --

.4 ' 1 2.A -0 /* O6, ,0,

0.-6.A

.5 2 0.0 5.0 200

A

Figure 15. Values of 0 -y Il<  From Eq. (33) as Functions of A With B as
Parameter. Solid lines; values of y 1 for which j 'S 1; dashed lines; values of
Yl for which j 2t 1; dotted lines; separate regions according to number of
class IIU solutions existing in each region
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5. FORMS OF THE POTENTIAL

The primary purposes of this report are to investigate structure, to classify

solutions, and to organize methods of obtaining the latter. We do not, therefore,

present here large numbers of graphs of potential vs distance; these are given in

works previously referred to. We do, however, for illustrative purposes, give

several examples of such graphs and to this end we choose parameters lying in

regions 4, 5, 8 and 9, in all of which there are three solutions corresponding to

each pair of parameters (A, B). Figures 16, 17, 18, and 19 each show the three

potential curves corresponding to the values of parameters shown in Table 3.

Table 3. Parameters For Graphs of Potential. Numerals in Parenthesis
Give Class

Figure Number 16 17 18 19

Region 4 5 8 9

B 1.0 2.0 0.1 0.6

O3 0.0 3.0 -0.99 -0.640

A 6.0 15 1.0 2. 1

C 2  -0. 926 1(II) -0. 1651(11) ---

C 3  -4. 086 (Ii) -13.31 (1) -0. 02545(I) -1. 118(11)

Yl 0.3187 0. 2525 0.7092 0.5794

yl 0.9672 0.6679

J 0.3591 0.9546 0.0118 0.5813

- 0.9311 0.9324
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Figure 16. Potential Curves Corresponding to Region 4. B= 1. 0; 0 0 0. 0; A= 6. 0
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Figure 17. Potential Curves Corresponding to Region 5. B= 2. 0; 0 o 3. 0; A= 15. 0
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Figure 18. Potential Curves Corresponding to Region 8. BI= 0. 1; 0(D 0 -0. 99, A= 1.0
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Figure 19. Potential Curves Corresponding to Region 9. B= 0. 6; (00= -0. 64; A= 2. 1
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Applendix A

Listirtg Of gp,,isl Value of A

AK (B 2  (B B3 - B2 + 1)1

+t ( 3+ 2) (B

AM 
3

A 
2 (B+ 1

1 2
3

R(B+ ) (B3+1

A 2  -(1-1j3) rriato q 7.

(Ag A 2 ' ARare rOot, of the diSrL~iatfEq 
7.
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